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ABSTRACT American options are considered in a market where the underlying asset follows a
Variance Gamma process. A sufficient condition is given for the failure of the smooth fit principle
for finite horizon call options. A second-order accurate finite-difference method is proposed to
find the American option price and the exercise boundary. The problem is formulated as a Linear
Complementarity Problem and solved numerically by a convenient splitting. Computations have
been accelerated with the help of the Fast Fourier Transform. A stability analysis shows that the
scheme is conditionally stable, with a mild stability condition of the form k5O(|log(h)|21). The
theoretical results are verified numerically throughout a series of numerical experiments.
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Introduction

The variance gamma (VG) process was first introduced in financial modelling by

Madan and Seneta (1990) to cope with the shortcomings of the Black–Scholes

model. Empirical studies of financial time series have revealed that the normality

assumption in the Black–Scholes theory cannot capture heavy tails and asymmetries

present in the empirical log-returns. The empirical densities are usually too peaked

compared to the normal density; a phenomenon known as excess of kurtosis. In

addition, the Black–Scholes assumption on constant parameters is inconsistent since,

for example, a numerical inversion of the Black–Scholes equation based on market

prices from different strikes and fixed maturity, produces a so-called volatility skew

or smile. In these aspects, VG modelling is superior to the Black–Scholes model: on

one hand, it has the property that daily log-returns have heavy tails and on the other

hand, for longer periods it approaches normality, which is also consistent with

empirical studies. Moreover, by introducing extra parameters, one can control the
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kurtosis and asymmetry of the log-return density, and one is also able to fit the smile

in the implied volatility (Madan and Seneta, 1990; Carr et al., 1998).

There exist, however, important drawbacks when modelling with the VG process.

For example, a hedging strategy for the writer of the option that will completely

remove the risk of writing the option does not exist, in general; in other words, a

portfolio that replicates any contingent claim cannot be constructed.
In this paper we give a sufficient condition for which the so-called smooth fit

principle for American options under the VG process does not hold. For the infinite

horizon case it has been proved by Alili and Kyprianou (2005). Secondly, we propose

a tractable numerical method based on a linear complementarity formulation of the

free boundary value problem for the VG prices. A numerical valuation of VG

American options was carried out by Hirsa and Madan (2004), using finite

differences on a non-linear interpretation of the PIDE. Compared to Hirsa and

Madan (2004), the method proposed here is more easily extendible to other finite
variation processes. Moreover, the method presented can naturally handle the

asymptotic behaviour of the free boundary near expiry. We accompany the method

by a stability analysis, similar in spirit to the Von Neumann stability analysis given

by Andersen and Andreasen (2000) for the jump-diffusion case.

Another general model based on the Carr–Geman–Madan–Yor (CGMY) pro-

cess, introduced by Koponen (1995), is numerically solved by Matache et al. (2003),

by a combination of variational inequalities and the Galerkin method, with a

convenient wavelet basis to compress the resulting full matrix. In the present paper,
however, a simpler implicit–explicit method is proposed, which, in combination

with a fast convolution procedure based on the fast Fourier transform, offers

an effective pricing procedure for European and American vanilla options. In a

previous paper (Almendral and Oosterlee, 2005), we used matrix splitting to solve

numerically jump-diffusion European vanilla options; see also D’Halluin et al.

(2005), where the differential operator is handled implicitly, and D’Halluin et al.

(2004) for an application of the penalty method to American options under Merton’s

model.
The outline of the paper is as follows. In the following section we offer a brief

introduction into the VG market model and the option pricing problem, and discuss

the failure of the smooth-fit principle. The next two sections are dedicated to the

numerical valuation of a VG call option. In the third section we reformulate the

problem as a linear complementarity problem and consider a timestepping method

to solve it numerically. In the fourth section a stability analysis is carried out to get

the insight that the scheme is conditionally stable, with a mild stability restriction,

and in the fifth section we show numerical experiments that confirm the theoretical
findings. The sixth section concludes.

A Market Modelled by the Variance Gamma Process

In this section we summarize known facts about a market driven by the VG process

(Carr et al., 1998). The VG process is obtained by evaluating a drifted Brownian

motion at random times given by a gamma process. For a definition of the gamma

process see Cont and Tankov (2004). The three parameters determining the VG
process X (t; s, n, h) are the volatility s of the Brownian motion, the variance n of the
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gamma distributed time and the drift h of the time-changed Brownian motion with

drift.

Consider a market consisting of one bank account B(t), with risk-free interest rate

r, and some risky asset S(t). The bank account evolves as usual according to the law

dB(t)5rB(t)dt and the asset {S(t)}t>0 follows the exponential dynamics:

S tð Þ~S0 exp L tð Þð Þ ð1Þ

where

L tð Þ~{atzX t; s, n, hð Þ ð2Þ

Here 2a is the drift of the logarithmic price of the asset. We assume also that the

asset pays its owner a continuous dividend q>0. The process {L(t)}t>0 is a so-called

Lévy process, i.e. a process with stationary, independent increments.

Assume the existence of some equivalent martingale measure (EMM) Q such that

the discounted process {e2(r2q)tS(t)}t>0 becomes a martingale, and suppose that the

parameters s, n and h are also chosen to be risk-neutral. For a discussion of the issue

of choosing Q see Cont and Tankov (2004).

We may write the Lévy–Khintchine representation of L(t) with respect to this new

measure as follows:

EQ eizL tð Þ
� �

~exp t {iazz

ð

¡
eizx{1
� �

k xð Þdx

� �� �
ð3Þ

where k(x) is known as the Lévy density.

In a risk-neutral world, it is possible to find the form of the drift a. Namely, by

substituting z52i in (3), and comparing the result with the so-called risk-neutrality

condition

EQ S tð Þ½ �~S0et r{qð Þ ð4Þ

where r and q are the risk-free interest rate and the dividend paid by the asset,

respectively, one arrives at

a~q{r{v ð5Þ

where v is some ‘compensation constant’ given by

v~

ð

¡
1{eyð Þk yð Þdy ð6Þ

Notice that the notation used here is as in Hirsa and Madan (2004) (the solution

method however will be completely different, as mentioned in the introduction). It is

possible to compute v by using the characteristic function of the process {X(t)}t>0

(Carr et al., 1998):

EQ eizX tð Þ
� �

~ 1{izhnzz2s2n=2
� �{t=n ð7Þ

Substituting z52i in this expression and using the risk-neutrality condition, one
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finds the following form for v:

v~
1

n
ln 1{hn{s2n=2
� �

ð8Þ

It is also known that the Lévy density k(x) has the form:

k xð Þ~
1
n

exp {lz xj jð Þ
xj j if xw0

1
n

exp {l{ xj jð Þ
xj j if xv0

8<
: ð9Þ

where the positive parameters l¡ are given by

l{1
+ ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2n2

4
z

s2n

2

s
+

hn

2
ð10Þ

Note that the positive exponent l+ must be larger than 1 for the constant v to be well

defined.

American Options in a VG Market

Consider an American call option on the underlying S(t), with expiry T, and strike

price K. For the non-degenerate case, i.e. for infinite activity jump processes

combined with a diffusion process, it is shown in Bensoussan and Lions (1984) that

the price v(t, s) solves a certain set of integro-differential inequalities. A discussion of

the degenerate case (purely jump processes, like the VG process) for European options

is provided in Cont and Voltchkova (2005), where the concept of viscosity solution is

used to obtain existence and uniqueness results under rather weak conditions. For the

degenerate case a classical solution is not appropriate due to general lack of regularity.

For the American case, Theorem 6.1 in Boyarchenko and Levendorskii (2002) gives

conditions under which the stochastic representation is a continuous solution of these

integro-differential inequalities. It is beyond the scope of this paper to discuss existence

and uniqueness results for these equations. We state the equations for a call, and assume

that the stochastic representation is a continuous solution.

Let t stand for time to maturity. Let the continuation region consist of intervals of

the form (0, c(t)), for a certain increasing function c(t), not known a priori. The

continuation region has this special form if the solution is convex, non-decreasing,

and satisfies the Lipschitz condition; see Lemma 2.1. The free boundary value

problem for the American option price is the following:

vtz q{r{vð Þsvszrv

{

ð
¡

v t, seyð Þ{v t, sð Þð Þk yð Þdy~0 for t [ 0, Tð �, s [ 0, c tð Þð Þ
ð11Þ

with k(y) as in (9) and initial and boundary conditions

v 0, sð Þ~ s{Kð Þz for s§0 ð12Þ

v t, 0ð Þ~0 for t[ 0, T½ � ð13Þ
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v t, c tð Þð Þ~c tð Þ{K for t [ 0, Tð � ð14Þ

The formulation of (11) is already stated forward in time. Two extra conditions on

the solution must be imposed:

vtz q{r{vð Þsvszrv

{

ð

¡
v t, seyð Þ{v t, sð Þð Þk yð Þdy§0 for t [ 0, Tð �, s [ c tð Þ, ?ð Þ

ð15Þ

and

v t, sð Þ§ s{Kð Þz for t [ 0, Tð �, s [Rz ð16Þ

Condition (15) states that the integro-differential operator is constant in sign on the

exercise region. This is an important remark when reformulating this problem as a

linear complementarity problem. The second condition (16) has a parallel in obstacle

problems, where the obstacle in this case is the payoff function.

The Smooth Fit Principle

The smooth fit principle (or smooth paste principle) was first introduced in the

financial literature by Samuelson (1965) under the name ‘high contact-condition’.

The principle essentially states that the derivative of the Black–Scholes American

option price is a continuous function, also at the exercise boundary. The geometrical

interpretation is that, for each fixed t.0, the function v(t, s) as a function of the asset

value s, smoothly enters into the payoff function, in the Black–Scholes world.

We will make use of the following monotonicity result.

Lemma 2.1. The mappings t¨v(t, s), s¨v(t, s) and s¨v(t, s)2s are

nondecreasing, nondecreasing and non-increasing respectively.

Proof. The proof is the same as in Karatzas and Shreve (1998), Lemma 7.4. We

include it here for the sake of completeness. The first assertion follows from the fact

that a stopping time in [0, t] is also a stopping time in [0, t9], for t(t9. The second

assertion is also immediate since the function s¨(sH(t)2K)+ is nondecreasing. Here,

H(t) is the price process starting at 1, or, in other words, S(t)5sH(t), with

H tð Þ : ~exp r{qð ÞtzvtzX tð Þ½ �

To prove the third assertion, let 0(s1,s2,‘ and let t2 be some optimal stopping

time corresponding to s2. Then

v t, s2ð Þ{v t, s1ð Þ~EQ e{rt2 s2H t2ð Þ{Kð Þz

 �

{v t, s1ð Þ

ƒEQ e{rt2 s2H t2ð Þ{Kð Þz{ s1H t2ð Þ{Kð Þz
� 

 �

ƒ s2{s1ð ÞEQ e{rt2 H t2ð Þ½ �

where we have used the inequality a+2b+
((a2b)+, valid for any a, b g R. It remains
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to observe that, since {e2(r2q)tH(t)}t>0 is a Q-martingale, then {e2rtH(t)}t>0 is a

supermartingale. Hence, by Doob’s Optional Sampling Theorem, EQ[e2rt2H(t2)](1.

We will now show that the smooth-fit principle is not valid, if we assume that the

dividend q satisfies a certain condition. To write down this condition, let us recall the

expression for v:

v~

ð

¡
1{eyð Þk yð Þdy

If we denote by v2 and v+ the integral above over the negative semi-axis and the

positive semi-axis, respectively, then we may split v as v5v2+v+.

We show next that if

q > rzv{ ð17Þ

the derivative of a call option turns out to be discontinuous. An important issue

should be discussed at this point. We do not mention in which sense v is a solution to

(11)–(16). Solutions in the viscosity sense or in the weak sense usually help giving a

proper meaning to the concept of solution. However, if we know that v is a

continuously increasing function in s, then it is well known that the derivatives exist

almost everywhere. Hence, for s in the continuation region, the following inequality

always makes sense (at least a.e.):

q{r{vð Þsvszrv{

ð

¡
v t, seyð Þ{v t, sð Þð Þk yð Þdyƒ0 ð18Þ

Let us rewrite this expression as

q{r{vð Þs 1{vsð Þ§ q{r{vð Þszrv{

ð

¡
v t, seyð Þ{v t, sð Þð Þk yð Þdy ð19Þ

Now we use some properties that we require from the solution, i.e. for y,0,

v(t, sey)2v(t, s)(0, and v>s2K. These inequalities lead us to the following estimate

q{r{vð Þs 1{vsð Þ§qs{vs{rK{

ð?
0

v t, seyð Þ{v t, sð Þð Þk yð Þdy ð20Þ

The Lipschitz property is now invoked. As proved in Lemma 2.1, given that sey.s,

for y.0, one has

v t, seyð Þ{v t, sð Þƒs ey{1ð Þ ð21Þ

so that the right-hand side in (20) may be bounded from below by qs2v2s2rK,

which for s>K gives

q{r{vð Þs 1{vsð Þ§K q{r{v{ð Þ ð22Þ

If we also know that the free boundary is an increasing function, we arrive at the

following positive lower bound

1{vs§
K

c Tð Þ
q{r{v{

q{r{v
> 0, Vt [ 0, Tð Þ and Vs [ K , c tð Þ½ Þ ð23Þ

Roughly speaking, if we want a solution satisfying the usual properties of an
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American option price, this solution cannot have a continuous derivative and at the

same time satisfy the integro-differential equations.

Remark 2.1. The condition in Alili and Kyprianou (2005) for the lack of smooth-

fit in the perpetual case of a call option is that the drift of the Lévy process has to be

negative, i.e. q2r2v.0. Note that, since v+ is non-negative, q2r2v2>q2r2v.0,

that is, (17) implies negative drift.

Numerical Valuation of the American VG Price

Our goal here is to solve the free boundary problem (11)–(16) numerically, when the

asset pays a positive dividend.

We are interested in the effect of adding a diffusion part to the VG process: The new
coefficient will then be denoted by ŝ. This parameter is later used to compare

numerically the regularity of the free boundary with diffusion (Generalized VG process,

ŝ > 0) and without diffusion (VG process, ŝ~0). The omission of this parameter does

not really affect the numerical method that we are about to explain.

We will not work directly on (11)–(16), but rather on its logarithmic version, i.e.

we change variables to x5ln s and solve for the new function

u t, xð Þ : ~v t, exð Þ ð24Þ
To transform equations (11)–(16) to these new variables, it is also convenient to

define the ‘logarithmic continuation region’:

C
*

~ t, xð Þf [ 0, ?ð Þ|¡ju t, xð Þ > ex{Kð Þz



ð25Þ

and the optimal logarithmic asset value at which the option should be exercised:

c
*

tð Þ~sup x[¡ju t, xð Þ > ex{Kð Þz
� 


, t[ 0, ?ð Þ ð26Þ
We are ready now to present the formulation of (11)–(16) in the logarithmic price:

ut{Lu~0, tw0, xv
~c tð Þ ð27Þ

u t, xð Þ~ex{K , t > 0, x§
~c tð Þ ð28Þ

u t, xð Þ§ ex{Kð Þz, t > 0, x[¡ ð29Þ

ut{Lu§0, t > 0, x > ~c tð Þ ð30Þ

u 0, xð Þ~ ex{Kð Þz, x [¡ ð31Þ

where the operator L is defined in the following way:

Lr : ~
ŝ2

2
rxx{ q{rz

ŝ2

2

� �
rx{rr

z

ð

¡
r t, xzyð Þ{r t, xð Þ{ ey{1ð Þrx t, xð Þ½ �k yð Þdy

ð32Þ

Note that we have included a second-order term.
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This problem may be cast as the following so-called linear complementarity

problem

ut{Lu§0

u§y

ut{Luð Þ u{yð Þ~0

u 0, xð Þ~y xð Þ

8>>><
>>>:

in 0, Tð �|¡

in 0, T½ �|¡

in 0, Tð �|¡
ð33Þ

where the initial condition is given by

y xð Þ : ~ ex{Kð Þz ð34Þ

This formulation of the problem is the basis for the numerical method presented.

Discretization

We discretize the linear complementarity problem (33) by finite differences. The idea

of the method is to consider one part of the integral term implicitly and the

remaining explicitly. The implicit part will make sure that the scheme requires only a

few time-steps. We will discuss the stability in a later section.

Consider a computational domain of the form [0, T]6[xmin, xmax]. Let the time

interval [0, T] be divided into M equal parts: 05t0,t1,...,tM5T, with tm5mk,

m50, 1, ..., M and k5T/M. The spatial interval [xmin, xmax] contains the point ln K,

and xmin5x0,x1,...,xN5xmax, with xn5xmin + nh, n50, …, N, and h is such that

h5(xmax2xmin)/N.

We split the operator L into a sum of two operators A and B:

Ar : ~
ŝ2

2
rxx{ q{rz

ŝ2

2
{v hð Þ

� �
rx{rr

z

ð

yj jƒh

r t, xzyð Þ{r t, xð Þ{ ey{1ð Þrx t, xð Þ½ �k yð Þdy
ð35Þ

where we introduce the notation:

v hð Þ~
ð

yj j§h

1{eyð Þk yð Þdy ð36Þ

and

Br : ~

ð

yj j§h

r t, xzyð Þ{r t, xð Þ½ �k yð Þdy ð37Þ

Now, define the time approximations um<u(tm, x) and consider the following
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implicit-explicit timestepping method to solve (33):

umz1{um

k
{Aumz1{Bum

§0

umz1
§y

umz1{um

k
{Aumz1{Bum

� �
umz1{y
� �

~0

u0~y

8>>>>>><
>>>>>>:

ð38Þ

This method is related to Zhang (1997) for the computation of the American put for

Merton’s model.

Spatial discretization of A. The idea here is to approximate all the integrals to

O(h2), in the presence of the singular density,

k yð Þ~O
1

y

� �
, y?0 ð39Þ

The trapezoidal rule applied to the integral operator gives, for the positive interval

ðh

0

w xnzyð Þ{w xnð Þ{ ey{1ð Þwx xnð Þ½ �k yð Þdy

~

ðh

0

w xnzyð Þ{w xnð Þ{ywx xnð Þ{ ey{1{yð Þwx xnð Þ½ �k yð Þdy

~
d2 wð Þ

2

ðh

0

y2k yð Þdy{
d1 wð Þ

2

ðh

0

y2k yð ÞdyzO h2
� �

where we write

d1 wð Þ : ~
wiz1{wi{1

2h
, d2 wð Þ : ~

wiz1{2wizwi{1

h2
ð40Þ

The term ey212y has been substituted by y2/2 with an error of the order O(y3). We

have carried out some approximations of order O(h2), and the terms
Ð h

0
y2k yð Þdy are

of the same order, according to (39). Therefore, dropping the term

ðh

0

w xnzyð Þ{w xnð Þ{ ey{1ð Þwx xnð Þ½ �k yð Þdy

does not affect the accuracy of the scheme. Numerical results confirm this fact.

Remark 3.1. The discretization order for the integrand (w(x+y)2w(x))k(y) by the

trapezoidal method deteriorates as k(y)5O(y212r), r.0 since the integrand becomes

less smooth. The same algorithm has been tested for the CGMY process in

Almendral (2005) where we found only first-order spatial convergence. A second-

order accurate approximation for the CGMY process, based on an integration-by-

parts technique, is part of a forthcoming report.

In this paper, the convection term is discretized by a Lax–Wendroff scheme or by

the central scheme. The reason for choosing a Lax–Wendroff scheme is that we
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would like to take a closer look at the smooth-fit principle in the numerical examples

below. It is well known that the central scheme is not monotone, with incorrect

oscillations occurring in the solution in the vicinity of jumps. The Lax–Wendroff

scheme is not monotone either, but for the examples in this paper, where the solution

developes a kink at exercise, the Lax–Wendroff scheme is much better behaved than

the central scheme.

We recall that the Lax–Wendroff discretization (in this case implicit) of a term

Qwx is the following (LeVeque, 1990; Strikwerda, 1989):

Q
wm

nz1{wm
n{1

2h
zQ2 k

h2
wm

nz1{2wm
n zwm

n{1

� �
ð41Þ

The first term is a plain central scheme, and the second one is the Lax–Wendroff

update. This discretization is second-order accurate in space. With discretization

schemes based on total variation diminishing (TVD) or essentially nonoscillatory

(ENO) (see LeVeque, 1990) stability concepts wiggles can be avoided at any time, but

these concepts are somewhat involved and beyond the scope of the present paper.

Spatial discretization of B. Away from the origin, the integral term in B may be

split into a sum of two terms:
ð

yj j§h

w xnzyð Þ{w xnð Þ½ �k yð Þdy~Jn{wnl hð Þ ð42Þ

with the obvious notation

Jn~

ð

yj j§h

w xnzyð Þk yð Þdy ð43Þ

l hð Þ~
ð

yj j§h

k yð Þdy ð44Þ

The most expensive part lies in computation of the numbers Jn. Let us explain first

how these entries may be computed approximately. Later we give a method to

accelerate the resulting correlations. It is assumed here that the number of spatial

points N is an even number.

Let L be an integer larger than 1. The trapezoidal rule on truncation of the integral

gives:

Jn~

ð

yj j§h

w xnzyð Þk yð Þdy&
ð

hƒ yj jƒLh

w xnzyð Þk yð Þdy

~h
XL

l~{L

wnzlklrlzO h2
� �

, n~0, 1, . . . , N

ð45Þ

The following notation was employed:

kl~k lhð Þ, l=0 ð46Þ
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rl~
1=2

1

if l [ {L, {1, 1, Lf g
otherwise

�
ð47Þ

and for m50 we have redefined k(0) as 0. Error estimates for this truncation are

given in Cont and Voltchkova (2005).

We need to do something special for indices n+l such that xn+l(xmin (i.e. n+l(0)
or xn+l > xmax (i.e. n+l > N). In the case of an American option we simply let

wn+l:5yn+l. In other words, we substitute w by the payoff function for points lying

outside the computational domain. For European options the situation is different

since the asymptotic behaviour of a call or a put depends on the interest rate r. For

example, a call approaches ex2Ke2rt for x large, and 0 for x large negative. In the case of

a put we have Ke2rt for x large negative and 0 for large positive. Another possibility to

treat the negative far field is to consider the ODE that results from the substitution s50

(the same as xR2‘) in the PIDE, that is, ut52ru. The solution of this ODE is of the
form Ce2rt, and the constant C may be determined from previous values u(xmin).

For the coefficients l(h) and v(h) we may use the same approximation. For

example

l hð Þ~
ð

yj j§h

k yð Þdy&h
XL

l~{L

klrl ð48Þ

In our numerical computations we let L5N/2.

Setting up the discrete linear complementarity problem. We see now that the entries

of the tridiagonal matrix (the implicit part) for the Lax–Wendroff scheme are given

by

a~{Pk
�

h2{ tzt2
� ��

2 ð49Þ

b~1zrkz2kP
�

h2zt2 ð50Þ

c~{Pk
�

h2z t{t2
� ��

2 ð51Þ

with the quantities

P : ~ŝ2
�

2, Q~q{rzŝ2
�

2{v hð Þ, m~k=h, t~mQ ð52Þ

The entries for the central scheme are almost the same: We just drop the t2-term
wherever it appears. The resulting tridiagonal matrix whose entries are a, b and c is

constant along its diagonals:

T~

b c

a b c

P P P

a b c

a b

2
6666664

3
7777775

ð53Þ
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Using (45)–(48), the discretization for the right-hand side reads

dm
n ~um

n zkh
XN=2

l~{N=2

unzl{unð Þklrl ð54Þ

Note that this vector needs to be updated for the boundary condition. For American

call options this is done by updating the first and the last entries in dm, i.e.

dm
1 /0, dm

N{1/dm
N{1{c exmax{Kð Þ ð55Þ

Summarizing, the problems we wish to solve for m50, 1, …, M21, have the

following form:

Tumz1
§dm

umz1
§y

Tumz1{dm, umz1{y
� �

~0

8><
>:

ð56Þ

Matrix T is defined by (49)–(53), dm is given by the expression (54) with the update

(55) and y is the vector [y1, y2, …, yN21]T, with yn5y(xn).

Because of the particular form of the problem and of matrix T, the Brennan–

Schwartz algorithm may be used to find the solution to this LCP. This will be

explained next. The quantities Jn appearing in dm will be treated separately.

The Brennan–Schwartz Algorithm

The well-known Brennan–Schwartz algorithm was originally developed for

American put options, for which a rigorous justification can be found in Jaillet

et al. (1990). The algorithm needs to be adapted for handling American call options,

as mentioned in Jaillet et al. (1990). The natural modification needed is a

straightforward reordering of indices, as explained in this section.

Let a tridiagonal matrix

T~

b1 c1

a2 b2 c2

P P P

an{1 bn{1 cn{1

an bn

2
6666664

3
7777775

ð57Þ

and vectors d5[d1,…, dn]T and y5[y1,…, yn]T be given. Consider the following

problem: find a vector u satisfying the system

Tu§d

u§y

Tu{d, u{yð Þ~0

8><
>:

ð58Þ

The following algorithm results for an American call:
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N Step 1: Compute recursively a vector
~
b as

~
b1~b1

~
bj~bj{ajcj{1

�~
bj{1, j~2, . . . , n

N Step 2: Compute recursively a vector
~
d as

~
d1~d1

~
dj~dj{aj

~
dj{1

�~
bj{1, j~2, . . . , n

N Step 3: Compute u backwards:

un~max
~
dn=

~
bn, yn


 �

uj~max
~
dj{cjujz1

� �.~
bj , yj

h i
, j~n{1, n{2, . . . , 1

We apply this algorithm using the matrix T given in (53). The algorithm for the put

option is analogous to the above algorithm, but the numbering of the indices must be

reversed (Jaillet et al., 1990).

Remark 3.2. A more general method by Cryer (1983) allows the solution of (58)

with the only requirement that T is an M-matrix. Cryer’s algorithm may be used to

tackle problems where the exercise boundary is not connected, as in American

butterfly spread options. This algorithm only requires O(n) operations.

The splitting proposed in (35)–(37) does not satisfy the sufficient conditions of the

Brennan–Schwartz algorithm. If we want to comply with these conditions, the term

containing the first derivative in A should be moved to B instead, with only a minor

change in the entries of matrix T. However, the explicit treatment of this convection

term will result in a more demanding stability condition. The algorithm used is,

however, provably correct if ŝ > 0 and h is sufficiently small.

Fast convolution by FFT. The fast Fourier transform is an algorithm that evaluates

the discrete Fourier transform (DFT) of a vector f5[f0, f2 …, fR21] in O(Rlog R)

operations.

The discrete Fourier transform is defined as:

Fk~
XR{1

n~0

fne{i2pnk=R, k~0, 1, . . . , R ð59Þ

One of the multiple applications of the DFT is in computing convolutions. Let us

first introduce the concept of circulant convolution. Let {xm} and {ym} be two

sequences with period R. The convolution sequence z:5x*y is defined component-

wise as

zn~
XR{1

m~0

xm{nym ð60Þ
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We use now FFT to compute the vector [z0, …, zR21]. The periodic structure of x

allows the derivation of the following simple relation:

Zk~Xk
:Yk ð61Þ

where X, Y and Z denote the discrete Fourier transform of the sequences x, y and z,

respectively. That is, DFT applied to the convolution sequence is equal to the

product of the transforms of the original two sequences. The vector [z0,…, zR21] may

be recovered by means of the inverse discrete Fourier transform (IDFT):

zn~
1

R

XR{1

k~0

Zkei2pkn=R, n~0, 1, . . . , R ð62Þ

In the language of matrices, a circulant convolution may be seen as the product of

a circulant matrix times a vector. For example, let R53, and use the periodicity

xk5xk+R to arrive at

z0

z1

z2

2
64

3
75~

x0 x1 x2

x2 x0 x1

x1 x2 x0

2
64

3
75

y0

y1

y2

2
64

3
75 ð63Þ

A circulant matrix is thus a matrix in which each row is a ‘circular’ shift of the
previous row.

We are interested in the correlation sequence (45), where the vector w is not

periodic. The associated matrix is a so-called Toeplitz matrix, which by definition is

a matrix that is constant along diagonals. A circulant matrix is hence a particular

type of Toeplitz matrix. The next idea is to embed a Toeplitz matrix into a circulant

matrix. As an example, let L51 and N52, so that the matrix-vector notation for (45)

reads

w1 w0 w{1

w2 w1 w0

w3 w2 w1

2
64

3
75

k1=2

k0

k{1=2

2
64

3
75 ð64Þ

The matrix above may be embedded in a circulant matrix C of size 5 in the following
way:

C~

w1 w0 w{1 w3 w2

w2 w1 w0 w{1 w3

w3 w2 w1 w0 w{1

w{1 w3 w2 w1 w0

w0 w{1 w3 w2 w1

2
6666664

3
7777775

ð65Þ

(For computational efficiency of the FFT algorithm, it is advisable to use a circulant

matrix whose size is a power of 2.) If we define the vector g:5[k1/2, k0, k21/2,0,0]T,
then the product (64) is the vector consisting of the first three elements in the product

Cg. As explained before, the product of a circulant matrix and a vector may be done

efficiently by applying the FFT algorithm.
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As a summary, following the ideas explained above, it is possible to compute the

correlation (45), with L5N/2, by ‘embedding’ the resulting matrix into a circulant

matrix. The product of a circulant matrix and a vector is carried out in three FFT

operations, namely, two DFT and one IDFT.

For further details on the computation of convolutions by FFT we refer to Van

Loan (1992).

Second-order Timestepping Method

The timestepping method considered so far gives an error of the form O(k+h2). In

order to have a method that is also second-order accurate in time, we propose an

extrapolated variant of the well-known BDF2 scheme.

The second-order timestepping method reads

3
2

umz1{2umz 1
2

um{1

k
{Aumz1{Bûm~0 ð66Þ

For the sake of readability the complementarity conditions have been omitted. Here

ûm : ~2um{um{1 ð67Þ

as for an explicit BDF2 scheme (Hundsdorfer, 2001). That is, this scheme is a

mixture of implicit and explicit BDF2, where the implicit part is as before, a

differential operator, and the explicit part is the integral operator away from the

singularity. The initial vectors u0 and u1 are the payoff function and one Euler step

according to scheme (38).

Stability Analysis

In this section we carry out a von Neumann stability analysis. We first study Euler’s

scheme:

umz1{um

k
{Aumz1{Bum~0 ð68Þ

where operators A and B are defined in (35) and (37).

Element-wise, the Euler scheme reads

umz1
n {um

n {d umz1
nz1 {2umz1

n zumz1
n{1


 �

zmc umz1
nz1 {umz1

n{1


 �
zrkumz1

n {kh
XN=2

l~{N=2

um
nzl{um

n

� �
klrl

ð69Þ

where

m~k=h, d~ŝ2k
�

2h2, c~ q{r{ŝ2
�

2{v hð Þ
� ��

2

For linear schemes like (69), a useful shortcut to finding the amplification factor g is

to substitute

um
n ~gmeinhj ð70Þ
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into the scheme and do the simplifications; for examples see Strikwerda (1989). After

some manipulations one arrives at the following linear equation in g:

1zrkz2dz mc{dð Þeihjz {mc{dð Þe{ihj

 �

g{ 1zkhW h, jð Þ½ �~0 ð71Þ

Here, we introduce the function

W h, jð Þ : ~
XN=2

l~{N=2

eilhj{1
� �

klrl~
1

n

XN=2

l~{N=2

eilhj{1
� � e{l+ lj jh

lj jh rl ð72Þ

The symbol l¡ is a short-hand notation indicating that we take l+ or l2 if l is

positive or negative, respectively. The amplification factor turns out to be

g~g h, jð Þ~ 1zkhW h, jð Þ
1zrkz2d sin2 hj=2ð Þz2imc sin hjð Þ

ð73Þ

We are looking for an estimate of the form |g|(1. That is, we need to estimate

gj j2~ 1zkh ReWð Þ2z kh ImWð Þ2

1zrkz2d sin2 h=2ð Þ
� �2

z4m2c2 sin2h
ð74Þ

where h:5hj, h g [0, 2p]. Let us study the function W defined in (72). We focus on

the positive part of the sum (as the negative part goes similarly). Consider the sum

S hð Þ~
XN=2

l~1

eilhj{1
� � e{lzlh

l
ð75Þ

We drop the coefficients rl. Letting hR0, the imaginary part tends to the integral

ðxmax

0

sin xjð Þ
x

e{lzx dx ð76Þ

The improper integral (letting xmax R ‘) has the known value arctan j
lz

� �
, which is

bounded. However, the real part is unbounded for hR0. We may find a lower bound

for the real part as follows:

Re S hð Þ~{
XN=2

l~1

2 sin2 lh=2ð Þe{lzlh

l
§{2

XN=2

l~1

e{lzlh

l
ð77Þ

Denote by f(h) the sum on the right-hand side of (77). To find an expression for this

sum, one differentiates element-wise with respect to h to obtain a geometric series.

The resulting expression is integrated and one arrives at the identity

f hð Þ~{ 1{e{lzxmax
� �

log 1{e{lzh
� �

ð78Þ

The integration constant is easily seen to be zero by letting h R ‘. It

remains to observe now that for h small and l+.1, the logarithm in (78) is greater

than log h.

Returning to (73): in order to find a bound for the numerator, we look for
time steps k such that 1+kh Re W>0. From the discussion above it follows that this
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is satisfied if

kƒ{
C

log hð Þ ð79Þ

for a certain constant C. For numerical purposes, this is a very mild restriction on the

time step, i.e. given a time step, only a very small h will violate this condition.

We now use a second elementary inequality: x2+y2
((|x| + |y|)2, which, applied to

the numerator of g, gives

gj j2ƒ 1zkh ReWzkh Im wj jð Þ2

1zrkð Þ2
ð80Þ

On the other hand, for h small enough, Re W + |Imw|(0. Hence, for k satisfying (79),

we obtained the desired |g|(1/(1+rk).

We present in Figure 1 a plot of the function g(h) for different values of h, but with

fixed k. Observe that only for M55 and N515000 are there points outside the unit

circle. Employing the parameters given in Figure 1, the constant in (79) becomes

C~1=4 1{e{lzxmax
� �

. For example, this implies that for time steps smaller than 0.09,

0.05 and 0.03, for N5100, 1000 and 15000 respectively, the numerical solution is

stable.

Let us now briefly look at the extrapolated BDF2 scheme. In this case, the

amplification factors are the roots of the following second-order amplification

polynomial:

g5g2zg4gzg3 ð81Þ

Figure 1. Amplification factor g(h) for M55 and different values of N. The parameters are:
r50.3, q50, ŝ~0, K51, T51, n51, l+5l255, xmin524, xmax54
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where

g5~3=2zrkz2d sin2 h=2ð Þz2imc sin hð Þ

g4~{2 1zkh W h, jð Þð Þ

g3~1=2zkh W h, jð Þ

The stability analysis for this case is more involved. We show in Figure 2 that the

roots are different and that a more demanding time-step restriction is needed, as

expected. For N52000 we see that some of the roots fall outside the unit circle.

Numerical Examples

First, we carry out a reference experiment where we compute a European call option

with Euler’s timestepping and the central scheme. The parameters are:

r~0:1, q~0, lz~5, l{~5, n~1, K~1, T~1 ð82Þ

Table 1 shows that the Euler scheme gives first-order convergence as expected. Note

that the CPU times correspond to linear complexity in accordance with the FFT

complexity.

In the second experiment we consider a put option with the same parameters (82).

(Recall that the Brennan–Schwartz algorithm for a put is different from that for a

call.) We show numerically that the implicit–explicit BDF2 scheme (66) is second-

order accurate in space and in time by comparing the numerical solution with a

reference value computed with many grid points. The results are summarized in

Table 2.

Let us focus now on the smooth fit. The third experiment consists in computing

the American call price using the following parameters:

s~0:2, h~0:085, n~1, K~1, N~2500 and M~500

Figure 2. Amplification factor for the explicit BDF2 scheme with parameters as in Fig.1. Left:
N5100; Right: N52000
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Notice that s is needed in (8), (10). It is assumed first that the condition q . r + v is

satisfied (v520.11) so let r50.1 and q50.1. In this case the sufficient condition

q . r + v2 does not hold since v250.1. Observe in Figure 3 that there is no smooth

fit. This was already pointed out in Matache (2003). If we satisfy condition (17) by

taking for example q50.3, the lack of smooth fit becomes more obvious, as

Table 1. First-order convergence for a VG European call

N M Error at x50 CPU time (s)

100 10 5.2E–3 0.02
200 20 2.7E–3 0.03
400 40 1.3E–3 0.06
800 80 6.7E–4 0.18
1600 160 3.1E–4 0.93
Ref. value 0.15131

Table 2. Second-order convergence for a VG European put

N M error at x50 rate CPU time (s)

100 10 1.7E–3 0.006
200 20 4.1E–3 4.1 0.01
400 40 9.1E–5 4.5 0.04
800 80 2.5E–5 3.6 0.15
1600 160 6.5E–6 3.8 0.87
Ref. value 0.0640837

Figure 3. Left: VG option value and payoff function; Right: Delta for ŝ~0:1 (dashed line) and
for ŝ~0 (continuous line). The parameters are: r50.1, q50.1, s50.2, h50.085, n51,

K51, N52500, M5500 and T59
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illustrated in Figure 4. This picture shows that the numerical Delta has small

oscillations close to the jump. To avoid these oscillations, we propose using the Lax–

Wendroff scheme for the convection term. The result of this choice is displayed in

Figure 4 (right picture). The same applies to a put option with for example r50.3 and

q50.

Figure 3 (right) also displays the smearing effect on the continuity of the option

Delta after including a small diffusion s in the VG model. For s~0 the figure shows

that the smearing does not appear. Related theoretical results for finite activity

processes may be found in the work of Pham (1997).

Next, we examine the behaviour of the free boundary near expiry. Two cases are

distinguished: (a) q(r + v2 and (b) q . r + v2. In the first case we let r50.1 and

q50.1 and find the asymptotic behaviour of the free boundary to be c(k)51.1246 (see

Figure 4. Left: Wiggles close to jump in the Delta due to central discretization. Right: The
wiggles disappear with the Lax–Wendroff discretization

Figure 5. Left: Free boundary when q , r + v2; parameters: T59, r50.1, q50.1, s50.2,
h50.085, n51, K51, M52000 and number of spatial points N58000. Right: Free boundary
when q . r + v2; parameters: T52, r50.1, q50.21 and the other parameters are the same as in
the left picture
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Figure 5, left). It is not difficult to verify that f (1.1246)<0, where

f sð Þ~qs{rK{

ðln K=sð Þ

{?
K{seyð Þk yð Þdy, s > 0 ð83Þ

In the second situation we choose r50.1 and q50.22, since v250.1. Figure 5 (right)

shows that c(k)<15K.

Finally, we summarize in Table 3 some numerical stability test results for both the

Euler scheme and the extrapolated BDF2 using the central scheme for convection,

computing a call option. The parameters are as in Figures 1 and 2; in particular the

number of time steps is set to M55, and the number of spatial steps N varies. The ‘v’

and ‘*’ in the table symbolize observed stable and unstable behaviour, respectively.
The stable solutions are oscillation free, whereas the unstable ones are not. As we

see, the results are in accordance with the stability analysis. In particular, we noticed

that the Euler scheme behaves somewhat better than predicted by the theory.

Conclusions

In the first part of this paper it was made plausible that the smooth fit principle fails
for the VG American call. The failure of the principle had already been pointed out

in the financial literature for a large family of pure-jump processes in the case of

infinite horizon. In the second part we proposed a numerical method to deal with the

American call. This method is easy to implement and may be used for general Lévy

processes with finite activity, even when the Lévy measure is obtained from

calibration. The method does not require knowledge of the characteristic function to

find the European price, as in, e.g., (Carr and Madan, 1999).
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